K-2

Maharashtra State Board of Technical Education, Mumbai

LABORATORY PLAN (LP)

Academic Year: 2025-26

Date: 10/12/2025

Institute Name & Code: K. K. Wagh Polytechnic, Nashik-3 (0078) Class: SYCH

Program and Code: Chemical Engineering (CH)

Course Index: CO406

Course Name: Pollution Control in Chemical Industries

Course Code & Abbr.: 314311(PCCI)

Total Hrs: 30 Semester: 4th Scheme: K

Name of Faculty: Mrs. Y. S. Kumawat

• INDUSTRY EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Apply pollution control methods to mitigate different types of pollution in the chemical industries

• COURSE LEVEL LEARNING OUTCOMES (COS)

- CO406.1: Use relevant equipment for the control of air pollution in chemical process industries
- CO406.2: Select the appropriate treatment method required for treating chemical industrial wastewater
- CO406.3: Select appropriate disposal method for given chemical industrial solid waste.
- CO406.4: Apply relevant treatment method for managing given hazardous waste
- CO406.5: Apply pollution control act to control pollution in chemical industry

Teaching and Examination Scheme:

					Learni	ng Scl	heme			Assessment Scheme											
Course Code	Course Title				al Cont s/Wee					tion		The	ory		В		n LL & TS ctical	SL	Base S	d on L	S
		Abbr	Course				SLH	NLH	Credits	r Duration	FA- TH	SA- TH	Tot	al	FA-	-PR	SA-	PR	SI	_A	Mark
			y/s	CL	TL	LL	, 	٢		Paper	Max	Max	Max	Min	Max	Min	Мах	Min	Мах	Min	Total
314311	POLLUTIO NCONTROL INCHEMIC ALINDUST RIES	PCCI	DSC	4	-	2	2	8	4	03	30	70	100	40	25	10	25#	10	25	10	175

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

• Laboratory Learning Outcome (LLO)

LLO No.	Title of LLO			
LLO 1.1	Use high volume sampler to measure particulate pollutant			
LLO 1.2	Explain the impact of particulate pollutant on the environment.			
LLO 2.1	Use orsat apparatus to determine composition of flue gases			
LLO 2.2	Explain the impact of flue gases on the environment			
LLO 3.1	Use pollution under control kit to measure pollutant concentration.			
LLO 4.1	Use Kjeldahl apparatus to determine total nitrogen content in waste water.			
LLO 4.2	Explain the impact of nitrogen level in water.			
LLO 5.1	Perform titration to determine chloride content in wastewater.			
LLO 5.2	Explain the impact of chloride level in water.			
LLO 6.1	Use TDS meter to determine total dissolved solids in wastewater.			
LLO 6.2	Explain the impact of TDS level in water.			
LLO 7.1	Use DO meter to determine dissolved oxygen in wastewater			
LLO 7.2	Explain the importance of dissolved oxygen in water			
LLO 8.1	Use COD apparatus to determine Chemical Oxygen Demand of the given effluent			
	sample			

LLO No.	Title of LLO				
LLO 8.2	Explain the concept of Chemical Oxygen Demand				
LLO 9.1	Use BOD apparatus to determine Biological Oxygen Demand of the given effluent				
	sample.				
LLO 9.2	Explain the concept of Biological Oxygen Demand				
LLO 10.1	Use turbidity meter to measure turbidity of given wastewater sample.				
LLO 12.1	Perform titration to determine the neutralization point of waste water.				
LLO 13.1	Calculate density of given solid waste by using weighing balance.				
LLO 14.1	Use specific gravity bottle to determine density of hazardous waste				
LLO 16.1	Use CPCB online monitoring system for analysis of air quality index of various cities.				

• COs, Practical Laboratory Learning Outcome (LLOs) and Mapping:

PR. No	Relevant COs	Practical - Laboratory Learning Outcome (LLO)	Name of Experiments/Assignment/ Sheet/ Job/ Project Activity		ed Dates	Actual Date of conduction	Remark / Assessment Date with Staff sign
				From	То		
1	CO1	LLO 1.1 LLO 1.2	* Measurement of particulate pollutants using High Volume	A-25/02/26 B-26/02/26	A-04/03/26 B-05/03/26		
			Sampler.	C-27/02/26	C-06/03/26		
		LLO 2.1	*Determination of total nitrogen	A-04/03/26	A-11/03/26		
2	CO1	LLO 2.2	content in wastewater using kjeldahal apparatus.	B-05/03/26	B-12/03/26		
				C-06/03/26	C-13/03/26		
				A-07/01/26	A-14/01/26		
3	CO1	LLO 3.1	*Determination of chloride content in wastewater.	B-08/01/26	B-15/01/26		
				C-09/01/26	C-16/01/26		
		LLO 4.1	*Determination of total dissolved solids in wastewater.	A-14/01/26	A-21/01/26		
4	CO1	LLO 4.2		B-15/01/26	B-22/01/26		
				C-16/01/26	C-23/01/26		
		11051		A-21/01/26	A-28/01/26		
5	CO2	LLO 5.1 LLO 5.2	Determination of dissolved oxygen in wastewater.	B-22/01/26	B-29/01/26		
		LLO 3.2	oxygen in wastewater.	C-23/01/26	C-30/01/26		
		11061	Determination of Chemical	A-28/01/26	A-04/02/26		
6	CO2	LLO 6.1 LLO 6.2	Oxygen Demand of the given	B-29/01/26	B-05/02/26		
			effluent sample.	C-30/01/26	C-06/02/26		
				A-04/02/26	A-11/02/26		
_	002	LLO 7.1	*Determination of Biological	B-05/02/26	B-12/02/26		
7	CO2		Oxygen Demand of the given effluent sample.	C-06/02/26	C-13/02/26		

PR. No	Relevant COs	Practical - Laboratory Learning Outcome (LLO)	Name of Experiments/Assignment/ Sheet/ Job/ Project Activity	Planne	ed Dates	Actual Date of conduction	Remark / Assess- ment Date with Staff sign	
8	CO3	LLO 9.1	*Measurement the turbidity of	A-11/02/26 B-12/02/26	A-18/02/26 B-19/02/26			
8	CO3	LLO 9.2	given wastewater sample.	C-13/02/26	C-20/02/26			
			*Determination of	A-18/02/26	A-25/02/26			
9	CO4	LLO 10.1	neutralization point for charcoal treatment of acidic	B-19/02/26	B-26/02/26			
			wastewater.	C-20/02/26	C-27/02/26			
				A-17/12/25	A-24/12/25			
10	CO4	LLO 12.1	* Determination of density of solid waste.	B-18/12/25	B-25/12/25			
				C-19/12/25	C-26/12/25			
				A-24/12/25	A-31/01/26			
11	CO5	LLO 13.1	* Determination of density of hazardous waste.	B-25/12/25	B-01/01/26			
			nazardous waste.	C-26/12/25	C-02/01/26			
			*Measurement of air quality	A-31/01/26	A-07/01/26			
12	CO1	LLO 14.1 y	index of five different areas of your city on the basis of national ambient air quality standards.	B-01/01/26	B-08/01/26			
				C-02/01/26	C-09/01/26			
				A-11/03/26	A-18/03/26			
13	CO1	NA	Determine the RSPM of Person Air Sampler	B-12/03/26	B-19/03/26			
	- '			7 III Sumpler	C-13/03/26	C-20/03/26		

• ASSESSMENT METHODOLOGIES/TOOLS

A. Formative assessment (Assessment for Learning) (FA-TH)

- Continuous assessment based on process and product related performance indicators. Each practical will be assessed considering
 - o 60% weightage is to process
 - o 40% weightage to product

B. Summative Assessment (Assessment of Learning) (SA-TH)

- Continuous Assessment based on Process and Product related performance indicators. Each practical will be assessed considering
 - o 60% weightage to Process
 - o 40% weightage to Product

• Laboratory Equipment / Instruments / Tools / Software required

Sr.	Equipment Name with Broad Specifications	Relevant LLO
No.		Number
1	High Volume Sampler.	1
	Flow Rate: 0.8 to 1.8 m3/min, Particle Size: Down to 1.6 micron depending upon	
	Filter used, Blower: Continues duty blower with brushless Motor, Recommended	
	filter: GF/A (8" X 10") for common use, EPM 2000 for Special Research or	
	equivalent, Time Record: 0 to 99999.99 hrs. Time totalizer records the running	
	time in hours, Timer: 24 Hrs Programmable timer, number of required intervals	

	can be programmed, Power requirement: 220Volts, Single phase AC.	
2	Turbidity Meter.	10
2	↓	10
	Range: 0 - 10,000 NTU Principle of Operation: Nephelometric Ratio (Color	
	Correction): Full Time ON or OFF, Accuracy: ± 2% of reading plus 0.01 NTU (0	
	to 1000 NTU), Resolution:0.0001 NTU on Lowest Range, Response Time: less	
	than 6 seconds, Sample Size: 30 ml, Light Source: Quick connect Infrared,	
	Operating Temperature: 0° - 50°C, Air Purge: Connection for external dry air	
	supply, Outputs: RS-232 Serial Port	
3	Jar test Apparatus.	11
	No. of Jar (Stirrer options): - 6 Speed range: - 2 to 250 RPM (Made available in	
	variable speed control) Timer: -Digital timer supports – 0 to 99 minutes Controls	
	Keypad: - Touch-sensitive Digital Display: -LED, digital rpm indicator support	
	Power: - 220 v ac supply, 50 Hz, 100 W Temperature: - 35 oC Accuracy: ± 2 RPM	
	Size: - Standard and Customized Body: -Powder-coated body finish	
4	Orsat Apparatus.	2
	Three absorption pipettes of two compartment type, 100 ml Gas Burette with outer	
	jacket, Three Test Manifold with stopcocks, Aspirator bottle, for the analysis of	
	CO, O2, CO2 particularly in fuel and furnace gases, Wooden cabinet with sliding	
	doors.	
5	PUC Kit.	3
	Leak Test: No, Technology Used to check the parameters: Electrochemical,	
	Optional Sensors: Temperature, Number of Impringer: 1, Parameters to check -	
	CO,CO2,HC,O2, Nox, Sox.,Standard Accessories: Sampling probe, Buttons: Soft	
	Touch Keys, Display Type: LCD, Calibration tests Certificate: Yes.	
6	Kjeldahal Apparatus.	4
	Heating mantle: - 6 Flask Capacity: -500 ml Structure: - Power coated MS Cabinet	
	Temperature:- Ambient + 10 oC to 350 oC Heating element: - Nichrome heating	
	element, Temperature Controller: - Energy regulator, Heating Surface: - Fiber	
	glass net, Power Supply: - 220 V, 50 Hz, Optional: PID Controller.	
7	DO meter.	7
	Range: 0-500%. Temperature: -5 oC to 55 oC. Resolution: 0.1 oC, Accuracy: ± 0.3	
	oC	
8	COD Apparatus.	8
J	Temperature Range: Above ambient to 180° C or higher, Temperature Resolution:	· ·
	0.1° C, Display: Digital 12mm Red LED, Control: Digital Electronic Temperature	
	Controller, Heater Rating: 750 Watts, Sensor: PT?100, Timer: Selectable 15, 30,	
	45, 60, 90 or 120 minutes with alarm, Hole Size: 38mm Diameter x 76mm Depth,	
	Glass Tube: 36mm diameter, 06 no (2 x 3rows), Sample Volume: 20 ml Each,	
	Overall size: 21 x 12 x 11", Net weight w/o packing: 21kilograms	
9	BOD Apparatus.	9
,	Temperature Range-5°C to 60°C, Temperature Accuracy- ± 0.5°C, Temperature	,
	Uniformity- ±1°C, Temperature sensor PT-100, Temperature Controller- PID	
	temperature controller LED display of SV & PV, Construction Double walled with	
	PUF Insulation, Inner Construction-Stainless Steel 304 grade, Exterior	
	Construction Powder Coated GI sheet, Exterior Door Solid door with lock & key,	
	· ·	
	Inner door-Glass door to view samples, Trays-Wire mesh cable trays(removable),	
	Interior illumination LED Light, Heating Element-U-shaped SS tubular heaters,	
	Refrigeration System CFC Free Compressor, Air Circulation Motorized Blower /	
10	Axial fan, Safety-Temperature High / Low alarm, Power supply-220 Volts 50 Hz	A 11
10	Weighing balance- Accuracy 0.1 mg to 500 gm	All
11	Glassware: Burette, Pipette, Conical Flask, Beaker, Measuring Cylinder, Specific	All
	gravity bottle etc.	

• References:

• Suggested Learning Materials / Books

Sr. No.	Author	Title of Book	Publication
1	Rao, C. S.	Environmental Pollution Control and Engineering	New Age International Publication, New Delhi, 2015. ISBN: 81-224-1835
2	S.P. Mahajan	Pollution Control in Process Industries	Mc Graw Hill, New York, 2009, ISBN 9781118843727
3	Soli J Arceivala, Dr. Shyam R. Asolekar	Waste water treatment for pollution control and reuse	McGraw Hill Education (India) Private Limited, ISBN: 9780070620995
4	A D Patwardhan	Industrial Solid Waste	Teri Press, New Delhi, 2013,ISBN:9788179935026
5	Michael D. Lagrega,Phillip L. Buckingham	Hazardous Waste Management	Mc Graw Hill, New York, 2009, ISBN: 078-87-403- 0363-6
6	Central Pollution Control Board.	Pollution Control Acts, Rules &Notifications Issued Thereunder	Central Pollution Control Board, ISBN: 978-2021152036.

• Learning Websites & Portal

Sr. No	Link / Portal	Description
1	https://ceerapub.nls.ac.in/wp-content/plugins/pdfjs-viewer-shortcode/pdfjs/web/viewer.php?file=/wp-content/uploads/2020/01/Handbook-on-Waste-Management-book.pdf&dButton=false&pButt on=false&oButton=false&sButton=true	E-Book-Handbook on Chemicals andHazardous Waste Management and Handlingin India
2	https://www.nptelvideos.com/video.php?id=1936&c=11	Sources of air pollution
3	https://archive.nptel.ac.in/courses/123/105/123105001/	Fundamentals of Environmental pollution and control
4	https://archive.nptel.ac.in/courses/105/106/105106056/	Physiochemical Treatment of solid and hazardous waste
5	https://cpcb.gov.in	Analysis of air quality index.

Mrs. Y. S. Kumawat (Name & signature of staff)

Dr. P. S. Bhandari (Name & signature of HOD)